skip to main content


Search for: All records

Creators/Authors contains: "Wells, Harry B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics. 
    more » « less
  2. Over a quarter of the world’s land surface is grazed by cattle and other livestock, which are replacing wild herbivores and widely regarded as drivers of global biodiversity declines. The effects of livestock presence versus absence on wild herbivores are well documented. However, the environmental context-specific effects of cattle stocking rate on biodiversity and livestock production are poorly understood, precluding nuanced rangeland management recommendations. To address this, we used a long term exclosure experiment in a semi-arid savanna ecosystem in central Kenya that selectively excludes cattle (at different stocking rates), wild mesoherbivores, and megaherbivores. We investigated the individual and interactive effects of cattle stocking rate (zero/moderate/high) and megaherbivore (>1,000 kg) accessibility on habitat use (measured as dung density) by two dominant wild mesoherbivores (50–1,000 kg; zebra Equus quagga and eland Taurotragus oryx ) across the “wet” and “dry” seasons. To explore potential tradeoffs or co-benefits between cattle production and wildlife conservation, we tested for individual and interactive effects of cattle stocking rate and accessibility by wild mesoherbivores and megaherbivores (collectively, large wild herbivores) on the foraging efficiency of cattle across both seasons. Eland habitat use was reduced by cattle at moderate and high stocking rates across both dry and wet seasons and regardless of megaherbivore accessibility. We observed a positive effect of megaherbivores on zebra habitat use at moderate, but not high, stocking rates. Cattle foraging efficiency (g dry matter step –1 min –1 ) was lower in the high compared to moderate stocking rate treatments during the dry season, and was non-additively reduced by wild mesoherbivores and high cattle stocking rates during the wet season. These results show that high stocking rates are detrimental to wild mesoherbivore habitat use and cattle foraging efficiency, while reducing to moderate stocking rates can benefit zebra habitat use and cattle foraging efficiency. Our findings demonstrate that ecosystem management and restoration efforts across African rangelands that involve reducing cattle stocking rates may represent a win-win for wild herbivore conservation and individual performance of livestock. 
    more » « less
  3. Serrano, Emmanuel (Ed.)
    Excluding large native mammals is an inverse test of rewilding. A 25-year exclosure experiment in an African savanna rangeland offers insight into the potentials and pitfalls of the rewilding endeavor as they relate to the native plant community. A broad theme that has emerged from this research is that entire plant communities, as well as individual plants, adjust to the absence of herbivores in ways that can ill-prepare them for the return of these herbivores. Three lines of evidence suggest that these “naïve” individuals, populations, and communities are likely to initially suffer from herbivore rewilding. First, plots protected from wild herbivores for the past 25 years have developed rich diversity of woody plants that are absent from unfenced plots, and presumably would disappear upon rewilding. Second, individuals of the dominant tree in this system, Acacia drepanolobium , greatly reduce their defences in the absence of browsers, and the sudden arrival of these herbivores (in this case, through a temporary fence break), resulted in far greater elephant damage than for their conspecifics in adjacent plots that had been continually exposed to herbivory. Third, the removal of herbivores favoured the most palatable grass species, and a large number of rarer species, which presumably would be at risk from herbivore re-introduction. In summary, the native communities that we observe in defaunated landscapes may be very different from their pre-defaunation states, and we are likely to see some large changes to these plant communities upon rewilding with large herbivores, including potential reductions in plant diversity. Lastly, our experimental manipulation of cattle represents an additional test of the role of livestock in rewilding. Cattle are in many ways ecologically dissimilar to wildlife (in particular their greater densities), but in other ways they may serve as ecological surrogates for wildlife, which could buffer ecosystems from some of the ecological costs of rewilding. More fundamentally, African savannah ecosystems represent a challenge to traditional Western definitions of “wilderness” as ecosystems free of human impacts. We support the suggestion that as we “rewild” our biodiversity landscapes, we redefine “wildness” in the 21 st Century to be inclusive of (low impact, and sometimes traditional) human practices that are compatible with the sustainability of native (and re-introduced) biodiversity. 
    more » « less
  4. Abstract

    Cattle and other livestock graze more than a quarter of the world's terrestrial area and are widely regarded to be drivers of global biodiversity declines. Studies often compare the effects of livestock presence/absence but, to our knowledge, no studies have tested for interactive effects between large wild herbivores and livestock at varying stocking rates on small‐bodied wild vertebrates.

    We investigated the effects of cattle stocking rates (none/moderate/high) on the diversity of wildlife 0.05–1,000 kg using camera traps at a long‐term exclosure experiment within a semi‐arid savanna ecosystem in central Kenya. In addition, by selectively excluding wild ‘mesoherbivores’ (50–1,000 kg) and ‘megaherbivores’ (>1,000 kg; elephant and giraffe), we tested whether the presence of these two wild herbivore guilds (collectively, ‘larger wild herbivores’) mediates the effect of cattle stocking rate on habitat use and diversity of ‘smaller wildlife’ (mammals ranging between 10 and 70 cm shoulder height and birds).

    Our results show that cattle enhance alpha diversity of smaller wildlife (with or without larger wild herbivore presence) and of all wildlife 0.05–1,000 kg (with or without megaherbivore presence), by altering vegetation structure. However, for smaller wildlife, this effect is less pronounced in the presence of larger wild herbivores, which also shorten grass. In the absence of cattle, mesoherbivore‐accessible sites showed higher alpha diversity of smaller wildlife than sites excluding mesoherbivores.

    Smaller wildlife habitat use was increased by high cattle stocking rates and wild mesoherbivores more in the presence of the other.

    Synthesis and applications. Our findings imply that grazing, whether by livestock or wildlife, can enhance local savanna wildlife diversity. The biodiversity benefits of localised increases in herbivory are likely to be due to shortened grass and associated visibility improvements (for predator avoidance/foraging). This suggests that land managers can increase local biodiversity by shortening grass, with wild or domestic herbivores (or both), at least in patches within a taller grass matrix.

     
    more » « less
  5. Abstract

    Whether wild herbivores confer biotic resistance to invasion by exotic plants remains a key question in ecology. There is evidence that wild herbivores can impede invasion by exotic plants, but it is unclear whether and how this generalises across ecosystems with varying wild herbivore diversity and functional groups of plants, particularly over long‐term (decadal) time frames.

    Using data from three long‐term (13‐ to 26‐year) exclosure experiments in central Kenya, we tested the effects of wild herbivores on the density of exotic invasive cacti,Opuntia strictaandO. ficus‐indica(collectively,Opuntia), which are among the worst invasive species globally. We also examined relationships between wild herbivore richness and elephant occurrence probability with the probability ofO. strictapresence at the landscape level (6150 km2).

    Opuntiadensities were 74% to 99% lower in almost all plots accessible to wild herbivores compared to exclosure plots.Opuntiadensities also increased more rapidly across time in plots excluding wild herbivores. These effects were largely driven by megaherbivores (≥1000 kg), particularly elephants.

    At the landscape level, modelledOpuntia strictaoccurrence probability was negatively correlated with estimated species richness of wild herbivores and elephant occurrence probability. On average,O. strictaoccurrence probability fell from ~0.56 to ~0.45 as wild herbivore richness increased from 6 to 10 species and fell from ~0.57 to ~0.40 as elephant occurrence probability increased from ~0.41 to ~0.84. These multi‐scale results suggest that any facilitative effects ofOpuntiaby wild herbivores (e.g. seed/vegetative dispersal) are overridden by suppression (e.g. consumption, uprooting, trampling).

    Synthesis. Our experimental and observational findings that wild herbivores confer resistance to invasion by exotic cacti add to evidence that conserving and restoring native herbivore assemblages (particularly megaherbivores) can increase community resistance to plant invasions.

     
    more » « less
  6. Abstract

    The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world‐wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood.

    We used long‐term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2–1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness.

    Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness.

    Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species).

    Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data‐limited species.

     
    more » « less